Pyrethroid Benefits & Science

Presented To Central Valley Regional Water Quality Control Board

Ву

Tess Dunham, Somach Simmons & Dunn Michael Dobbs, Bayer Crop Science

On Behalf of The Pyrethroid Working Group (PWG)
August 18, 2016

(c) Pyrethroid Working Group

About Pyrethroids

- PWG is an industry group comprised of pyrethroid manufacturers dedicated to research and stewardship
- PWG has extensively researched
 - From data summaries to modeling to lab to field monitoring studies
 - Have worked to address questions from the regulatory and broader community
- Have been in use for over 35 years
- Most widely used urban insecticides
- Have a favorable human health profile

Benefits

- **Protects Public Health**
 - Helps Control Pests that Transmit Serious Illnesses
 - Zika Virus
 - West Nile Virus
 - Malaria
- **Helps Control Pests**
 - Parasitic: Lice, Bedbugs
 - Nuisance: Cockroaches, ants, spiders
 - Property Damage: Termites
- Food Crops
 - Control of wide range of pests

*ADAM

Examples of PWG Research

PWG Pathway ID Study

- Validated the
 effectiveness of
 revised label
 restrictions and DPR
 regulations to
 substantially mitigate
 pyrethroid runoff
 - 40-fold reduction

Biomonitoring Studies

- Pyrethroids generally not the primary stressor impacting the benthic community
- Over the course of 10 years, Pleasant Grove Creek showing a declining trend of pyrethroids concentrations
- Hall, Anderson, and Killen, Arch Environ Contam Toxicol
 (2016) 70:332–340 (c) Pyrethroid Working Group

Questions raised by Water Board Members February 2016

- Food Chain Interactions
- Bioaccumulation
- Bioagnification
- Sublethal effects
- Sediment ingestion

Food Chain Interactions

- Most fish are opportunistic feeders
 - they feed on whatever species are most abundant
- While a few crustacean species (e.g. lab-reared *Hyalella azteca*) are extremely sensitive to pyrethroids, other crustaceans as well as insects, worms, and mollusks are much less sensitive
- The likelihood of fish survival, growth, and reproduction being affected by small changes in overall invertebrate abundance is very low

Evidence from mesocosm studies

 More than 50 mesocosm studies with pyrethroids show that effects of realistic exposure levels on community structure and productivity are minimal.

Bioaccumulation/Biomagnification

- Despite being highly adsorptive, pyrethroids do not bioaccumulate significantly in aquatic organisms
- Unlike some legacy highly adsorptive chemicals, pyrethroids are metabolized and depurated rapidly therefore bioconcentration is <1000
 - the usual criterion for bioaccumulative compounds.
- In addition, when modeled using EPA's standard tools,
 BCFs are generally predicted to be less than 1000
- Pyrethroids do not bioaccumulate because they are metabolized and excreted by organisms
- Because pyrethroids do not accumulate in aquatic organisms, they do not biomagnify through the food chain

Sublethal effects of pyrethroids are accounted for in standard risk assessments

- A wide variety of sublethal effects on aquatic organisms have been studied with pyrethroids
 - From biochemical to behavioral
- Most sublethal effects have not been quantitatively linked to survival, growth, and reproduction
- Concentrations reported to cause sublethal effects are similar to standard acute and chronic toxicity endpoints
 - Concentrations are significantly higher than the proposed trigger values.

Sediment ingestion is not a significant route of exposure of aquatic organisms to pyrethroids

- Equilibrium partitioning (EqP) theory: toxicity of hydrophobic chemicals is caused by freely dissolved chemical in the pore water (ie. Bioavailability)
- Applicability of EqP to pyrethroids has been well established
- These observations imply that pyrethroids sorbed to sediment are not a significant source of exposure

Summary

- Pyrethroids **do not** bioaccumulate significantly or biomagnify through the food chain
- Sublethal effects are accounted for in standard risk assessments
- Sediment ingestion is not a significant route of exposure for aquatic organisms.
- Bioavailability is a critical consideration in establishing and interpreting WQC for pyrethroids.

Pyrethroids Resource Website

Developing an online resource for information seekers interested in learning more

month (September 2016)

information beneficial to your understanding of pyrethroids.

Input on the Strawman Regulatory Approach

- Appreciate efforts to engage stakeholders
- Appreciate alternative approaches for implementation of water quality criteria
- Prefer use of 5th percentile triggers over 1st percentile values
- Support consideration of bioavailability
- Support phased approach

QUESTIONS?